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Abstract—An approach to sensorless position control of
permanent magnet DC motor drives is presented in this paper.
The rotor position has been estimated by the respective back
EMF voltage, measuring armature current. Using a discrete
vector-matrix description of the controlled object, an optimal
modal control has been synthesized. Detailed analysis has been
carried out by means of mathematical modeling and computer
simulation for the transient and steady state regimes. The re-
sults obtained show that the applied control method can pro-
vide good performance.

Index Terms—DC motor drive, optimal modal control, posi-
tion control, sensorless control, state observer

I. INTRODUCTION

Position is one of the main controlled variables in electric
drive systems. Movement control of the driven mechanisms
is required in many applications, such as: machine tools;
lifting machines; woodworking machines; manipulators and
robots; antennas; radio telescopes, etc.

Good performance can be provided by a cascade control
system, including a non-linear position controller with shift-
ing structure [1]. Such a controller provides for maximum
deceleration pace, but approaching the reference position its
gain should be limited in accordance with the condition of
lack of overshoot. This, on the other hand, leads to some
deterioration of the driving system dynamics. A solution to
this problem has been suggested in [2], where optimal mod-
al control is applied.

The sensorless control of electric drives reduces hardware
costs and improves mechanical reliability. For this reason
development of drive systems without sensors for the re-
spective mechanical coordinates is a topical problem of con-
temporary electric drives theory.

An approach to sensorless position control of DC motor

drives is described in this paper. The controlled object con-
sists of a four-quadrant transistor chopper and a permanent
magnet DC motor. The rotor position has been estimated
indirectly by the respective back EMF voltage, measuring
only armature current.

Using a discrete vector-matrix description of the con-
trolled object, a state observer has been synthesized, as well
as the respective optimal modal controller applying a com-
plex criterion for optimization [3].

Detailed study has been carried out by means of mathe-
matical modeling and computer simulation for the respective
dynamic and static regimes at various loading conditions.
The results obtained show that the applied method of control

can provide good performance.

II. MODELING OF THE CONTROLLED OBJECT

The vector-matrix model of the DC motor drive under
consideration is as follows:
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where: @ is angular position; @ — motor speed; i, — arma-
ture current of the motor; K, — back EMF voltage coeffi-
cient; K, — torque coefficient; R, — armature circuit resis-
tance; L, — armature inductance; K. —amplifier gain of the

chopper; v — input control signal of the chopper; J — total
inertia referred to the motor shaft; i; — armature current

which is determined by the respective load torque.
The basic parameters of the controlled object are as fol-
lows: K, =0.229 Vs/rad; K, =0.229 Nm/A; R, =0.755Q;

L, =0.003H; K, =3.63; J=0.006kg.m>.

In order to obtain a suitable simulation model some as-
sumptions have been made, such as:

- the transistor chopper operates at sufficiently high
commutation frequency, due to which its delay is neglected
eg v, =K.v;

- the load torque is limited, constant and unknown;

- the parameters of the model (1) are constant and known;

- the armature current is measured and the angular positi-
on is calculated.

The analogue model of the DC motor drive is realized ac-
cording to Eq. (1) and it is shown in Fig. 1.

Fig. 1 Model of the controlled DC motor drive
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In permanent magnet DC motors the back EMF voltage
E is proportional to the motor speed & :

do
E=K€0)=Kez. 2)

As the angular position € is not measured directly, in this
case it can be obtained from the back EMF voltage E . For
small quantization periods 7, Eq. (2) is transformed into
the next form:

O(k) = 6(k —1)+IT<—0E(k). 3)

e

The back EMF voltage can be calculated on the bases of
the armature voltage v, = K,.v and armature current i,
after its measurement.

The voltage applied on the motor armature is expressed
by the equation:

. di
va=Rala+La7:+E, “4)
from where
di
E=v, -R i —L —%. 5
a a“a a dt ()

For such a small quantization periods 7;; Eq. (5) can be
transformed into the next expression:

E(k) = v, ()= R,i, () — L, ) "l k=D _
Ty
(6)

. L, . L.
—va(k)—[Rala(k)+Ela(k) T, i,(k=1)1.

Taking into consideration Eq. (6), Eq. (3) becomes as fol-
lows:

O(k) = 8k —1) +

Ty o Ly, o Ly, )
+Ke {v, (k) [Raza(k)+T0 i, (k) 7, i,(k=11}.

Based on the Eq. (7) a discrete model of the angular posi-
tion calculator has been developed and its block diagram is
shown in Fig. 2.
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Fig. 2 Model of the angular position calculator

The following notations of state variables have been
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adopted: x; =60, x, =w, x3 =i, . The angular position 8
can be computed, so in this case it has been assumed that:

y(1) =Cx(1),
where: C=[1 0 O]; x! =[x1 Xy x3].

The discrete state-space model of the controlled object
can be represented as follows:

x4 Tayy ap a3 | 50| | p h
Xo(k+1) |=|agy apy ap3 | xp(k) [+| by pk}+| 12l - (8)
xyk+1)| 431 a3 a33 ) xqk)| 53 3

In order to use the quadratic quality criterion in the
process of synthesis, the system error of e(k) = 8,.(k) — (k)
should be formulated, where 6, (k) is the respective refer-
ence input.

It is assumed that both the reference and disturbance in-
puts are constant, i.e. 6,.(k)=const and i; =const. The

following equation concerns the error and state variables,
which are not outputs [3]:

LR I B o o ™l o
xze(k+1) _ 0 all —a12 —a13 xze(k)

— bl
= + ve(k
xk+1)| |0 —ay axm axy | k)| | by o)

x ke 10 a1 @z azs o, | L0s
)
or
Xe(k +1): Aexe(k)+beve (k), X, (O): X0
k=0,1,2, ..
y(k)=C.x, (k).
where:
xip(k)=elk-1)=6,(k—1)-60(k —1);
%3, (k) = elkc) = e(k —1) = —[6(k) - 6(k —1)];
x3, (k) = alk) - olk -1);
(10)
x4e(k):ia(k) la(k 1)’

v, (k)y=v(k)—v(k=1);
C,=[1 0 0 o]

Eqg. (9) has been used for the synthesis of both an optimal
modal digital observer and the respective optimal modal
controller.

III. SYNTESIS OF THE CONTROL SYSTEM

Synthesis of the digital observer has been realized in ac-
cordance with an algorithm presented in [4]. This procedure
utilizes the transpositioned additional object [5]:

ak +1) = ATa® + CTBK (11)

or
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The Az matrix eigenvalues are determined solving the
following equation:

1 0 0 0 ¥ 0 0 O
I apy —ay —azy | |0 x 0 Off_
dets o —app  ay ap 0 0 O =0.
0 —dapz any ass 0 0 0 X
(13)

For quantization period of T;; =0.001s the following ei-
genvalues are obtained:

lel; 12:1; 13:09879, 14:07870

In this case there are two undesired roots of the open-loop
system ( %, =1 and jy, =1), which must be displaced.

Locations for the closed-loop system roots 4 =0.05 and
Mo =0.1 are defined, where y; and y, should be placed.
The locations of w3 and u, are the same as in the open-
loop system, i.e. i3 = 3 and fy = ¥y4.

In order to define the observer H matrix, it is necessary
to find the elements of q; and q, eigenvectors corres-

ponding to j; and g, , respectively.
The q; eigenvector is obtained solving this system of

homogenous algebraic equations:
(A, -Iy;)q; =0,fori=1. (14)

For the elements of both eigenvector q; and weight ma-
trix Q; the following is obtained:

=
Il
coo~

Q =qqf =

SOoOOoO -
oo
coOoC
oo

These products are computed:

biqqf =[1 0 0 0]
and
b,qqib, =1.

Weight coefficient 7; =0.0554 and the 4; =1.0526 coef-

ficient are calculated:
After the first iteration, for the optimal modal feedback
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gain the following is obtained:

-0.95

0
Y1 = 0

0

In order to displace y, to location f,, the new system
with a state matrix should be optimized:

AZ :Ae +be71.

The q, eigenvector is derived after solving the system of
homogeneous algebraic equations:
(A —Ty;)q; =0 3a i=2. (15)

For the elements of both the eigenvector q, and weight

matrix Q, respectively, the following is obtained:

0.7250

_10.6887 | .

q2— 0 ’

0

0.5256 0.4993 0 O
T 104993 04744 0 O
Q,=qq; = 0 0 00
0 0 00

The next products are computed:

blqqf =[0.5256 04993 0 0]
and

blqqfb, =0.5256.

The respective weight coefficient r, =0.0649 and the
A, =1.1111 coefficient are computed.

After the second iteration, the optimal modal feedback
gain is obtained:

-0.900
—0.855
V2= 0 .
0

Since in this case there are two undesired values ( 7} =1

u ¥, =1), the optimal modal feedback gain becomes:

7T =T +¢y7 =[-18500 -08550 0 o0].

The observer feedback vector is formulated:

211 -1.850

_|ha|_ . *_|—0.855

H= Iy =y = 0 .
hy 0
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The observer equation is as follows [4]:

R, (k+1)=A %, (k)+b,u, (k) +Hde(k) =

=A x(Kk)+b.u, (k) +H[yk) - Cx(k)]
or

etk+D| 1 1 0 0
)ACze(k‘l‘l) _ 0 ar —a;p — 413
B30k +1) | |0 —ay axp  ax
Xgek+1)| [0 —a31 a3z asz

X

(16)
Te(k) 0 Iy
X (k) | —by hy
X %36 &) | b, u, (k) + hy Ae(k),
X4 (k) || b3 hy

where de(k)=y(k)—-Cx(k).

These equations produce the state variables valuation.
Based on them a model of the optimal modal observer has
been developed and its block diagram is shown in Fig.3.
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Fig. 3 Model of the optimal modal observer

Synthesis of the optimal modal controller has been rea-
lized by an algorithm described in [3]. In this case synthesis
is carried out based on Eq. (9).

At quantization period of T'=0.001s for the matrix A,

eigenvalues, the following is obtained:
X1 =0.7870; Y0 =0.9879; X3 =1; Xa =1.

Among these values two undesired roots exist ( 3 =1
and jy, =1), which should be displaced.

Locations for the closed-loop system roots t3 =0.9 and
M4 =0.8 are defined, where x5 and 4 should be placed.
The locations of x; and u, are the same as in the open-
loop system, i.e. i = ¥ and Wy = 5.

In order to determine the optimal modal controller matrix

K, it is necessary to find the elements of the eigenvector
q3, corresponding to 3, as well as the eigenvector qq,

corresponding to ¥, .

The q, eigenvector is obtained after solving the fo-
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llowing system of homogeneous algebraic equations:
T _ —
(Ag —Iyq; =0, fori=4. a7

The elements of eigenvector q, and weight matrix Qg4
are obtained as follows:

0.0000
_1-0.9356
44 =] 03529 |’
0.0123
0.0000 0.0000 0.0000  0.0000
Q, —| 00000 08753  ~0.3302 —0.0115
47100000 —0.3302 0.1245  0.0043 |°
0.0000 —0.0115 0.0043  0.0002

Next products are calculated:
bXQ, =[0.0000 -0.0139 0.0052 0.0002]

and
bT _ -4
cQub, =2.1994x107".

For these coefficients the following values are obtained:
r, =0.0044; A4 =5.
The optimal modal feedback gain is determined:

0.0000
12.6171

Y17 47594 |
-0.1653

In order to displace 3 to location 5, the new system
with a state matrix should be optimized:

AZ :Ae +be71.

The q3 eigenvector is obtained after solving the system
of homogeneous algebraic equations:
(AST —Iy;)q; =0.fori =3. (18)

For the elements of eigenvector q3 and weight matrix

Q; respectively, the following is obtained:

—~0.0110

_1-0.9994

43 =1 0.0331 |

0.0006
0.0001  0.0110 —0.0004 0.0000
Q. = quql =| 00110 09988 00331 —0.0006
374393 =1 00004 -0.0331 0.0011 0.0000 |°
0.0000 —0.0006 0.0000  0.0000

The products are defined:
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blqq} =[-0.0096 -0.871 0.0288 0.0005]x 10

and
blqqib, =7.5961 x107.

For these coefficients the following values are obtained:
ry =6.8365x107 and 43 =10.

At the second iteration, the optimal modal feedback gain
becomes:

1.2617
_|114.6677
72| -3.7945
—0.0661

Since there are two undesired values (3 =1 and

X4 =1), the optimal modal feedback gain is:

v T =97 +y7 =[1.2617 127.2848 -8.5539 -0.2314].

The feedback vector obtains this form:

/kq 1.2617
ko |_ ¢ _[127.2848
K=l |77 =] Z85539

k, -0.2314

and control of the following type is formulated:
Ve (k)= KTXe(k) = klxle + k2x26 + k3X3e + k4X4e . (19)

After substitution of v, (k) in Eq. (10), for the optimal
modal controller this expression is obtained:

V(k):V(k—1)+k1.xle +k2X2e +k3X3e +k4X4e . (20)

Analyzing Eq. (20) it can be seen, that the optimal modal
controller includes an integral component in its structure.
This means that when the driven mechanism is far from the
reference position, the integral component would increase at
each controlling cycle. It will quickly bring to saturation of
the control loop and as a result, the motor will be supplied
with maximum voltage. When the mechanism approaches
the reference position, the integral component will continue
to increase and will become the dominant part of the control
signal, forcing the electric drive to exceed the set position.

To solve this problem it is necessary to provide the fol-
lowing condition: when the driven mechanism enters some
preliminary set range (AGS =0, —0), tcontrol signal is es-
tablished to the maximum admissible value of v, , after
which this error of A6 is processed.

Based on these considerations, as well as on Eq. (20), the
model of an optimal modal controller has been constructed.
It is represented in Fig. 4.

In the developed system an overtaking current limitation
has been applied. The respective function is as follows:
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v (k) =v; + K ak), 1)

where: v; is the current limitation initial code; K — scale
coefficient.
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Fig. 4 Model of the optimal modal controller

Hence, the control condition in the presence of current
limitation will be:

ve (k)= {v(k)

v (k) for v(k)> v, (k).

for v(k) <V (k);
(22)

In real systems the limitation applied to the control signal
should also be taken into account:

v.(k) for
Ver (k) = {

for v.(k)>Vpax,

vC(k) S Vmax
(23)

Vmax

where v, is maximum value of the control signal.

The controlling code, which should be used to the chop-
per control scheme, is determined by conditions (21), (22)
and (23). In accordance with these equations an armature
current limitation model is composed, shown in Fig. 5.

Swuiteh 1| ¢

[=]

Constant?

Swiitch |

Fig. 5 Model of the current limitation
Practically, the optimal modal control in this case is

achieved through consequent realization of Eqs. (19), (20),
(21), (22) and (23).
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IV. SIMULATION AND PERFORMANCE ANALYSIS

To prove the offered control algorithm functionality some
computer simulation models have been developed, using the
MATLAB/SIMULINK software package.

The block diagram of the complete drive system with sen-
sorless position control is presented in Fig. 6, where the fol-
lowing notations are used: Subsystem 1 is the controlled
object; Subsystem 2 — the angular position calculator; Sub-
system 3 — the optimal modal observer; Subsystem 4 — the
optimal modal controller; Subsystem 5 — the current limita-
tion.
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Fig. 6 Model of the complete drive system

Fig. 7 shows some simulation results illustrating the drive
system performance for a positioning cycle.

In this case the reference angular position is 8, =200 rad
and the reference static current is equal to the rated value of
I}, =1, . The motor speed is limited to the rated value of
WD = Wyt -

During the starting regime the armature current is limited
to the maximum admissible value of [, =2.5/ ., which

provides good dynamics of the driving system.
The applied quantization period is 7{y = 0.001s . The rated

data of the used permanent magnet DC motor are as follows:
Viat =30V, I, =13.1A, @, =115.19rad/s.

V. CONCLUSION

An approach to position control of permanent magnet DC
motor drives is described in this paper.
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Fig. 7 Time-diagrams for a positioning cycle

Using a discrete vector-matrix description of the control-
led object, an optimal modal state observer has been synthe-
sized, as well as an optimal modal controller.

Detailed study has been carried out by means of mathe-
matical modeling and computer simulation for the respective
transient and steady state regimes at various loading condi-
tions.

The analysis shows that the represented control method
provides good performance, which makes it suitable for a
variety of applications.

The simulation models developed as well as the results
obtained could be used in the design of such types of posi-
tioning systems.
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