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Abstract—An approach to sensorless position control of 

permanent magnet DC motor drives is presented in this paper. 

The rotor position has been estimated by the respective back 

EMF voltage, measuring armature current. Using a discrete 

vector-matrix description of the controlled object, an optimal 

modal control has been synthesized. Detailed analysis has been 

carried out by means of mathematical modeling and computer 

simulation for the transient and steady state regimes. The re-

sults obtained show that the applied control method can pro-

vide good performance.   

 
Index Terms—DC motor drive, optimal modal control, posi-

tion control, sensorless control, state observer 

I. INTRODUCTION 

Position is one of the main controlled variables in electric 

drive systems. Movement control of the driven mechanisms 

is required in many applications, such as: machine tools; 

lifting machines; woodworking machines; manipulators and 

robots; antennas; radio telescopes, etc.   

Good performance can be provided by a cascade control 

system, including a non-linear position controller with shift-

ing structure [1]. Such a controller provides for maximum 

deceleration pace, but approaching the reference position its 

gain should be limited in accordance with the condition of 

lack of overshoot. This, on the other hand, leads to some 

deterioration of the driving system dynamics. A solution to 

this problem has been suggested in [2], where optimal mod-

al control is applied. 

The sensorless control of electric drives reduces hardware 

costs and improves mechanical reliability. For this reason 

development of drive systems without sensors for the re-

spective mechanical coordinates is a topical problem of con-

temporary electric drives theory.  

An approach to sensorless position control of DC motor 

drives is described in this paper. The controlled object con-

sists of a four-quadrant transistor chopper and a permanent 

magnet DC motor. The rotor position has been estimated 

indirectly by the respective back EMF voltage, measuring 

only armature current. 

Using a discrete vector-matrix description of the con-

trolled object, a state observer has been synthesized, as well 

as the respective optimal modal controller applying a com-

plex criterion for optimization [3]. 

Detailed study has been carried out by means of mathe-

matical modeling and computer simulation for the respective 

dynamic and static regimes at various loading conditions. 

The results obtained show that the applied method of control 

can provide good performance. 

II. MODELING OF THE CONTROLLED OBJECT 

The vector-matrix model of the DC motor drive under 

consideration is as follows: 
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where: θ  is angular position; ω  – motor speed; ai  – arma-

ture current of the motor; eK  – back EMF voltage coeffi-

cient; tK  – torque coefficient; aR  – armature circuit resis-

tance; aL  – armature inductance; cK  – amplifier gain of the 

chopper; v  – input control signal of the chopper; J  – total 

inertia referred to the motor shaft; li  – armature current 

which is determined by the respective load torque.     

The basic parameters of the controlled object are as fol-

lows: Vs/rad; 229.0=eK Nm/A;  229.0=tK Ω; 755.0=aR

H; 003.0=aL  ;63.3=cK
2kg.m 600.0=J . 

In order to obtain a suitable simulation model some as-

sumptions have been made, such as:  

- the transistor chopper operates at sufficiently high 

commutation frequency, due to which its delay is neglected 

e.g. vKv ca = ;  

- the load torque is limited, constant and unknown; 

- the parameters of the model (1) are constant and known; 

- the armature current is measured and the angular positi-

on is calculated. 

The analogue model of the DC motor drive is realized ac-

cording to Eq. (1) and it is shown in Fig. 1.  

 

 
 

Fig. 1  Model of the controlled DC motor drive 
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In permanent magnet DC motors the back EMF voltage 

E  is proportional to the motor speed ω :   

 

 
dt

d
KKE ee

θ
ω == .   (2) 

 

As the angular position θ  is not measured directly, in this 

case it can be obtained from the back EMF voltage E . For 

small quantization periods 0T  Eq. (2) is transformed into 

the next form:  
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The back EMF voltage can be calculated on the bases of 

the armature voltage vKv ca =  and armature current ai  

after its measurement. 

The voltage applied on the motor armature is expressed 

by the equation: 
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aaaa ++= ,                       (4) 

from where  
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aaaa −−= . (5) 

 

For such a small quantization periods 0T  Eq. (5) can be 

transformed into the next expression:  
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Taking into consideration Eq. (6), Eq. (3) becomes as fol-

lows: 
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Based on the Eq. (7) a discrete model of the angular posi-

tion calculator has been developed and its block diagram is 

shown in Fig. 2.  

 

 
 

Fig. 2  Model of the angular position calculator 

 

The following notations of state variables have been 

adopted: θx =1 , ωx =2 , aix =3 . The angular position θ  

can be computed, so in this case it has been assumed that:  

 

)()( tty Cx= , 

 

where: [ ]001=C ; [ ]321
T xxx=x .   

The discrete state-space model of the controlled object 

can be represented as follows: 
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In order to use the quadratic quality criterion in the 

process of synthesis, the system error of )()()( kkke r θθ −=  

should be formulated, where )(krθ  is the respective refer-

ence input.  

It is assumed that both the reference and disturbance in-

puts are constant, i.e. const)( =krθ  and const=li . The 

following equation concerns the error and state variables, 

which are not outputs [3]: 
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Eq. (9) has been used for the synthesis of both an optimal 

modal digital observer and the respective optimal modal 

controller.  

III. SYNTESIS OF THE CONTROL SYSTEM 

Synthesis of the digital observer has been realized in ac-

cordance with an algorithm presented in [4]. This procedure 

utilizes the transpositioned additional object [5]:  

 

 β(k)(k)1)(k TT
e eCαAα +=+  (11) 

or                                                                   
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The T
eA  matrix eigenvalues are determined solving the 

following equation: 
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For quantization period of s 001.00 =T  the following ei-

genvalues are obtained:  

 

11 =χ ; 12 =χ ; 9879.03 =χ ; 7870.04 =χ . 

 

In this case there are two undesired roots of the open-loop 

system ( 11 =χ  and 12 =χ ), which must be displaced. 

Locations for the closed-loop system roots 05.01 =µ  and 

1.02 =µ  are defined, where 1χ  and 2χ  should be placed. 

The locations of 3µ  and 4µ  are the same as in the open-

loop system, i.e. 33 χµ =  and 44 χµ = . 

In order to define the observer H  matrix, it is necessary 

to find the elements of 1q  and 2q  eigenvectors corres-

ponding to 1χ  and 2χ , respectively. 

The 1q  eigenvector is obtained solving this system of 

homogenous algebraic equations: 

 

 1for,0 ==−  i)χ( iie qIA . (14) 

 

For the elements of both eigenvector 1q  and weight ma-

trix 1Q  the following is obtained: 
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These products are computed: 
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Weight coefficient 0554.01 =r  and the 0526.11 =λ  coef-

ficient are calculated:  

After the first iteration, for the optimal modal feedback 

gain the following is obtained:  
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In order to displace 2χ  to location 2µ , the new system 

with a state matrix should be optimized:  
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The 2q  eigenvector is derived after solving the system of 

homogeneous algebraic equations:  
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For the elements of both the eigenvector 2q  and weight 

matrix 2Q  respectively, the following is obtained: 
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The next products are computed: 
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The respective weight coefficient 0649.02 =r  and the 

1111.12 =λ  coefficient are computed. 

After the second iteration, the optimal modal feedback 

gain is obtained: 
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Since in this case there are two undesired values ( 11 =χ  

и 12 =χ ), the optimal modal feedback gain  becomes: 
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The observer feedback vector is formulated: 
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The observer equation is as follows [4]: 
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where )(ˆ)()( kkke xCy −=∆ . 

These equations produce the state variables valuation. 

Based on them a model of the optimal modal observer has 

been developed and its block diagram is shown in Fig.3. 

 

 
 

Fig. 3  Model of the optimal modal observer 

 

Synthesis of the optimal modal controller has been rea-

lized by an algorithm described in [3]. In this case synthesis 

is carried out based on Eq. (9). 

At quantization period of s 001.0=T  for the matrix eA  

eigenvalues, the following is obtained: 

 

7870.01 =χ ; 9879.02 =χ ; 13 =χ ; 14 =χ . 

 

Among these values two undesired roots exist ( 13 =χ  

and 14 =χ ), which should be displaced.  

Locations for the closed-loop system roots 9.03 =µ  and 

8.04 =µ  are defined, where 3χ   and 4χ  should be placed. 

The locations of 1µ  and 2µ  are the same as in the open-

loop system, i.e. 11 χµ =  and 22 χµ = . 

In order to determine the optimal modal controller matrix 

K , it is necessary to find the elements of the eigenvector 

3q , corresponding to 3χ , as well as the eigenvector 4q , 

corresponding to 4χ . 

The 4q  eigenvector is obtained after solving the fo-

llowing system of homogeneous algebraic equations:  
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The optimal modal feedback gain is determined: 
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Since there are two undesired values ( 13 =χ  and 

14 =χ ), the optimal modal feedback gain is: 
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The feedback vector obtains this form: 
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and control of the following type is formulated: 
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After substitution of )(kve  in Eq. (10), for the optimal 

modal controller this expression is obtained: 
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Analyzing Eq. (20) it can be seen, that the optimal modal 

controller includes an integral component in its structure. 

This means that when the driven mechanism is far from the 

reference position, the integral component would increase at 

each controlling cycle. It will quickly bring to saturation of 

the control loop and as a result, the motor will be supplied 

with maximum voltage. When the mechanism approaches 

the reference position, the integral component will continue 

to increase and will become the dominant part of the control 

signal, forcing the electric drive to exceed the set position.  

To solve this problem it is necessary to provide the fol-

lowing condition: when the driven mechanism enters some 

preliminary set range ( )θθθ∆ −= rs , tcontrol signal is es-

tablished to the maximum admissible value of maxv , after 

which this error of sθ∆  is processed.  

Based on these considerations, as well as on Eq. (20), the 

model of an optimal modal controller has been constructed. 

It is represented in Fig. 4.  

In the developed system an overtaking current limitation 

has been applied. The respective function is as follows: 
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where: iv  is the current limitation initial code; sK – scale 

coefficient. 

 

 
 

Fig. 4  Model of the optimal modal controller 

 

Hence, the control condition in the presence of current 

limitation will be: 
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In real systems the limitation applied to the control signal 

should also be taken into account:  
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where maxv  is maximum value of the control signal.  

The controlling code, which should be used to the chop-

per control scheme, is determined by conditions (21), (22) 

and (23). In accordance with these equations an armature 

current limitation model is composed, shown in Fig. 5. 

 

 
 

Fig. 5  Model of the current limitation 

 

Practically, the optimal modal control in this case is 

achieved through consequent realization of Eqs. (19), (20), 

(21), (22) and (23). 
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IV. SIMULATION AND PERFORMANCE ANALYSIS 

To prove the offered control algorithm functionality some 

computer simulation models have been developed, using the 

MATLAB/SIMULINK software package.  

The block diagram of the complete drive system with sen-

sorless position control is presented in Fig. 6, where the fol-

lowing notations are used: Subsystem 1 is the controlled 

object; Subsystem 2 – the angular position calculator; Sub-

system 3 – the optimal modal observer; Subsystem 4 – the 

optimal modal controller; Subsystem 5 – the current limita-

tion.  

 

 
 

Fig. 6  Model of the complete drive system 

 

Fig. 7 shows some simulation results illustrating the drive 

system performance for a positioning cycle.  

In this case the reference angular position is 200=rθ  rad 

and the reference static current is equal to the rated value of 

ratII lr = . The motor speed is limited to the rated value of 

ratωω = .  

During the starting regime the armature current is limited 

to the maximum admissible value of ratmax 5.2 II = , which 

provides good dynamics of the driving system.  

The applied quantization period is s 001.00 =T . The rated 

data of the used permanent magnet DC motor are as follows:   

V, 30rat =V  A, 1.13rat =I  rad/s 19.115rat =ω .  

V. CONCLUSION 

An approach to position control of permanent magnet DC 

motor drives is described in this paper.  

 
 

Fig. 7  Time-diagrams for a positioning cycle 

 

Using a discrete vector-matrix description of the control-

led object, an optimal modal state observer has been synthe-

sized, as well as an optimal modal controller. 

Detailed study has been carried out by means of mathe-

matical modeling and computer simulation for the respective 

transient and steady state regimes at various loading condi-

tions.  

The analysis shows that the represented control method 

provides good performance, which makes it suitable for a 

variety of applications. 

The simulation models developed as well as the results 

obtained could be used in the design of such types of posi-

tioning systems.   
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